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1 Concentration of Sample Covariance of Gaussian Random
Vectors

1.1 Eigenvalues of sample covariance of Gaussian random vectors

Last time, we started to talk about the eigenvalues of sample covariance matrices of Gaus-
sian random vectors. We had (xi)iid∼

N(0,Σ), where Σ ∈ Sd×d is a positive definite d × d
matrix. We have

X =

x
>
1
...
x>n

 ∈ Rn×d, Σ̂ =
1

n

n∑
i=1

xix
>
i =

1

n
X>X ∈ §d×d.

We had the following theorem about the singular values of the random matrix.

Theorem 1.1.

1. P(σmax(X)/
√
n ≥ γmax(

√
Σ)(1 + τ) +

√
tr(Σ)/n) ≤ e−nt2/2.

2. P(σmin(X)/
√
n ≤ γmin(

√
Σ)(1 + τ)−

√
tr(Σ)/n) ≤ e−nt2/2.

The proof strategy was the following:

Proof. For simplicity, take Σ = 1. We had three main steps:

(a) Concentration: P(|σk(X)− E[σk(X)] ≥ t) ≤ 2e−t
2/2.

(b) E[σmax(X)] ≤
√
n+
√
d.

(c) E[σmin(X)] ≥
√
n−
√
d.
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Now we will give the details.
To prove (a), we need to show that the singular values are Lipschitz. By Weyl’s in-

equality,
|σk(x1)− σk(x2)| ≤ ‖X1 −X2‖op ≤ ‖X1 −X2‖F .

This impies that σk(X) is 1-Lipschitz in ‖ · ‖F , the Frobenius norm. Therefore, we get
Gaussian concentration, i.e. σk(X)− E[σk(X)] is sG(1).

To prove (b), we wanted an upper bound of σmax(X), using the variational formulation

σmax = sup
(u,v)∈Sn−1×Sd−1

〈u,Xv〉︸ ︷︷ ︸
Zu,v

.

We introduced the following ineqaality

Lemma 1.1 (Sudakov-Fernique inequality). Let {Zθ}θ∈T , {Yθ}θ∈T be two continuous Gaus-
sian processes on a separable space T with E[Zθ] = E[Yθ]. If E[(Zθ−Zθ′)2] ≤ E[(Yθ−Yθ′)2]
for all θ, θ′ ∈ T , then

E
[
max
θ∈T

Zθ

]
≤ E squamax

θ∈T
Yθ.

We will prove this later, but first, let’s see how this helps us. Define Zu,v = 〈u,Xv〉,
where Xi,j

iid∼ N(0, 1), and define

Yu,v =
n∑
i=1

uig1 +
d∑
j=1

νjgi = 〈u, g〉+ 〈v, h〉, iid∼ N(0, 1), hj
iid∼ N(0, 1).

We check the second moment conditions:

E[Zu,vZu′,v′ ] = E[〈X,uv>〉〈X,u′(v′)>〉]
In the summations, all but the diagonal terms will vanish.

= 〈u, v>, u′(v′)>〉
= 〈u, u′〉〈v, v′〉.

This tells us that

E[(Zu,v − Zu′,v′)2] = E[Z2
u,v]︸ ︷︷ ︸

=1

−2E[Zu,vZu,v′ ] + E[Z2
u′,v′ ]︸ ︷︷ ︸

=1

= 2− 2〈u, u′〉〈v, v′〉.

For Y , we have

E[(Yu,v − Yu′,v′)2] = E[Y 2
u,v]︸ ︷︷ ︸

=1

− 2E[Yu,vYu′v′ ]︸ ︷︷ ︸
=2(〈u,u′〉+〈v,v′〉)

+E[Y 2
u′,v′ ]︸ ︷︷ ︸
=1
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= 4− 2(〈u, u′〉+ 〈v, v′〉).

Then

E[(Yu,v − Yu′,v′)2]− E[(Zu,v − Zu′,v′)2] = 2(1− 〈u, u′〉)(1− 〈v, v′〉) ≥ 0

Now, applying the Sudakov-Fernique inequality gives

E
[

max
(u,v)∈Sn−1×Sd−1

〈u,Xv〉
]
≤ E

[
max

(u,v)∈Sn−1×Sd−1
(〈u, g〉+ 〈v, h〉

]
= E

[
max

(u,v)∈Sn−1×Sd−1
〈u, g〉

]
+ E

[
max

(u,v)∈Sn−1×Sd−1
〈v, h〉

]
= E[‖g‖2] + E[‖h‖2]
≤ E[‖g‖22]1/2 + E[‖h2‖2]1/2

=
√
n+
√
d.

For (c), we want to show a lower bound for σmin(X). We want to show that σmin ≥√
n−
√
d (with n ≥ d). We use the variational representation

σmin(X) = min
v∈Sd−1

max
u∈Sn−1

〈u,Xv〉︸ ︷︷ ︸
Zu,v

Here is another Gaussian process inequality which is a sort of generalization of Sudakov-
Fernique.

Theorem 1.2 (Gordon’s inequality). Let (Zs,,t)s∈S,t∈T , (Ys,,t)s∈S,t∈T be two Gaussian pro-
cesses with E[Zs,t] = E[Ys,t], and suppose that{

E[(Zs,t1 − Zs,t2)2] ≥ E[(Ys,t1 − Ts,t2)2] ∀t1, t2 ∈ T, s ∈ S,
E[(Zs1,t1 − Zs2,t2)2] ≤ E[(Ys1,t1 − Ts2,t2)2] ∀s1 6= s2 ∈ S, t1, t2 ∈ T.

Then

E
[
max
s∈S

min
t∈T

Zs,t

]
≤ E

[
max
s∈S

min
t∈T

Ys,t

]
.

Take Yu,v = 〈g, u〉 + 〈h, v〉. Check that Zu,v and Yu,v satisfy the conditions in the
theorem. Then

−E[σmin(X)] = E
[

max
v∈Sd−1

−‖Xv‖2
]

= E
[

max
v∈Sd−1

min
u∈Sn−1

〈u,−Xv〉
]
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≤ E
[

max
v∈Sd−1

min
u∈Sn−1

〈g, u〉+ 〈h, v〉
]

where g, h are iid Gaussian random vectors.

= E
[

max
v∈Sd−1

〈h, v〉
]

+ E
[

min
u∈Sn−1

〈g, u〉
]

= E[‖h‖2]︸ ︷︷ ︸
≈
√
d

−E[‖g‖2]︸ ︷︷ ︸
≈
√
n

.

So we get that
E[σmin(X)] ≥

√
n−
√
d.

1.2 Proof of the Sudakov-Fernique inequality

Now we will prove the Sudakov-Fernique inequality using the Gaussian interpolation method.
Here is a simpler version of the inequality for when the index set is finite.

Lemma 1.2 (Sudakov-Fernique inequality). Let X,Y ∈ Rn be two continuous Gaussian
random vectors with E[X] = E[Y ]. If E[(Xi −X2

j ] ≤ E[(Yi − Y 2
j ] for all i, j, then

E
[
max
i∈[n]

Xi

]
≤ E

[
max
i∈[n]

Yi

]
.

Proof. Without loss of generality, we may take X,Y to be independent. Let µ = E[X] =
E[Y ], and define

X̃ = X − µ, =̃T − µ,∈ Rn Z(θ) = cos θX̃ + sin θ+̃µ.

Fix β > 0, and define the soft max function Fβ : Rn → R by Fβ(x) = β−1 log(
∑n

i=1 e
βxi).

The parameter β determines how soft this“soft max” function is; when β → ∞, this
will be the max function. For θ ∈ [0, π/2], let ϕ(θ) = E[Fβ(Z(θ))]. The idea is that
ϕ(0) ≈ E[maxi∈[n]Xi] and ϕ(π/2) ≈ E[maxi∈[n] Yi], and these will be exact as we let
β →∞.

Using Fubini’s theorem and the cain rule, we can calculate the derivative

ϕ′(θ) = E

[
n∑
i=1

∂xiFβ(Z(θ))(− sin θX̃i + cos θỸ )

]
Using integration by parts or Stein’s lemma,

cos θ sin θE

 n∑
i,j=1

∂2xi,xjFβ(Z(θ))

 (E[Ỹ ; Ỹj ]− E[X̃i; Ỹj ])

Define pi(x) = ∂xiFβ(x) = eβxi/
∑n

j=1 e
βxj , which is a probability distribution on Rn.

Using some algebra with pi, we can show that ϕ′(θ) ≥ 0. This means that ϕ is increasing,
so ϕ(0) ≤ ϕ(π/2). Then we let β →∞ to get the inequality.
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The details of the algebra in the proof are contained in chapter 5 of Wainwright’s book.

1.3 More on Gaussian comparison inequalities

Here are some comments on these Gaussian comparison inequalities, which are very useful
in many cases. There is a more general statement of Gordon’s inequality, which contains
both an expectation version and a probabilistic version:

Theorem 1.3 (Gordon’s inequality). Let S, T be finite sets (or separable sets with contin-
uous processes). Let (Xs,t)s∈S,t∈T , (Ys,t)s∈S,t∈T be two Gaussian processes with E[Xs,t] =
E[Ys,t] = 0, and suppose that{

E[(Xs,t1 −Xs,t2)2] ≥ E[(Ys,t1 − Ts,t2)2] ∀t1, t2 ∈ T, s ∈ S,
E[(Xs1,t1 −Xs2,t2)2] ≤ E[(Ys1,t1 − Ts2,t2)2] ∀s1 6= s2 ∈ S, t1, t2 ∈ T.

Then

1. For any deterministic function Q(s, t),

E
[
max
s∈S

min
t∈T

Xs,t +Q(s, t)

]
≤ E

[
max
s∈S

min
t∈T

Ys,t +Q(s, t)

]
.

2. If we further have E[X2
s,t] = E[Y 2

s,t], then for all τ ∈ R and functions Q(s, t), we have

P
(

min
s∈S

max
t∈T

(Xs,t +Q(s, t)) ≥ τ
)
≤ P

(
min
s∈S

max
t∈T

(Ys,t +Q(s, t)) ≥ τ
)
.

For the probabilistic version of the inequality, it is better to assume the mean is zero,
but we do not need this for the expectation version.

This inequality can be used to derive the Gaussian contraction inequality: G(φ(T )) ≤
G(T ) if φ is 1-Lipshitz. We can also use it to prove the following.

Theorem 1.4 (Sudakov minorization). Let {Xθ}θ∈T be mean 0 Gaussian process on T .
Then

E
[
sup
θ∈T

Xθ

]
≥ sup

ε>0

ε

2

√
logM(ε;T, ρX),

where M(ε;T, ρX) is the packing number of T with metric ρX(θ, θ′) =
√

Var(Xθ −Xθ′).

These applications are shown in chapter 5 of Wainwright’s book.
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1.4 Concentration of sub-Gaussian sample covariance

Now, we generalize our analysis to the case where xi are sub-Gaussian random vectors,
E[xix

>
i ] = Σ ∈ Sd×d is a positive definite d× d matrix. Here,we still have

X =

x
>
1
...
x>n

 ∈ Rn×d, Σ̂ =
1

n

n∑
i=1

xix
>
i =

1

n
X>X ∈ Sd×d.

In this context, similar concentration results will hold.

Definition 1.1. We say a mean 0 random variable x ∈ Rd is sub-Gaussian(σ) if

E[eλ〈v,x〉] ≤ eλ2‖v‖22σ2/2 ∀λ ∈ R, v ∈ Rd.

Remark 1.1. This is not the same as saying that each entry of the vector is sub-Gaussian.
But if we suppose x ∈ Rd with xi independent sG(σ), then x is sG(σ):

E
[
eλ

∑n
i=1 vixi

]
=

n∏
i=1

E[eλvixi ]

≤
n∏
i=1

eλ
2v2i σ

2/2

= eλ
2‖v‖22σ2/2.

Theorem 1.5. Let (xi)i∈[n] be independent mean zero sG(σ). Then with probability at
least 1− δ, we have

‖Σ̂− Σ‖op ≤ Cσ2
(√

d+ log(1/δ)

n
+
d+ log(1/δ)

n

)
.

The upper bound is of the same order as the Gaussian case. The only difference is that
we lose a universal constant C.
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